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Mixture modelling is a commonly used technique for describing longitudinal patterns of
change, often with the aim of relating the resulting trajectory membership to a set of earlier
risk factors. When determining these covariate effects, a three-step approach is often
preferred as it is less computationally intensive and also avoids the situation where each new
covariate can influence the measurement model, thus subtly changing the outcome under
study. Recent simulation work has demonstrated that estimates obtained using three-step
models are likely to be biased, particular when classification quality (entropy) is poor. Using
both simulated data and empirical data from a large United Kingdom(UK)-based cohort study
we contrast the performance of a range of commonly used three-step techniques. Bias in
parameter estimates and their precision were determined and compared to new bias-
adjusted three-step methods that have recently become available. The bias-adjusted three-
step procedures were markedly less biased than the simpler three-step methods. Proportional
Maximum Likelihood (ML), with its complex-sampling robust estimation, suffered from
negligible bias across a range of values of entropy. Whilst entropy was related to bias for all
methods considered, there was evidence that class-separation for each pairwise comparison
may also play an important role. Under some circumstances a standard three-step method
may provide unbiased covariate effects, however on the basis of these results we would
recommend the use of bias-adjusted three-step estimation over these standard methods.
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Introduction

The use of mixture models in epidemiological
research has increased markedly in recent years,
partly due to developments in statistical software
packages such as Mplus (Muthén & Muthén, 2012)
and Latent Gold (Vermunt & Magidson, 2013) that
have brought these complex, computationally
intensive techniques within the grasp of the
average applied researcher. Mixture models come
in various forms; some designed specifically for
longitudinal data e.g. Latent Class Growth Analysis

or Growth Mixture Models (Muthén & Muthén,
2000) and others such as standard Latent Class
Analysis appropriate in either a longitudinal or
cross-sectional setting. All models share one
feature, the estimation of an underlying categorical
latent variable (hereafter referred to as X) which is
theorized to be the reason for some or all of the
patterns of association observed within the dataset.
The procedure will estimate the likely distribution
of X, namely the number of classes and their
prevalence, as well as individual probabilities of
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class membership, which describe the allocation of
each participant/observation to each latent class
under the estimated model. Many stopping rules,
e.g. entropy (Ramaswamy, DeSabro, & Robinson,
1993), Bayesian Information Criterion (BIC)
(Schwarz, 1978), Bootstrap Likelihood Ratio Test
(BLRT) (Nylund, Asparouhov, & Muthén, 2007) have
been utilized with the goal of determining an
adequate number of classes.

In some cases X itself is of little interest, for
instance its inclusion may be purely to help with
some deviation from normality within the data.
However, more often estimating X is a key focus as
it may represent underlying subpopulations who
have different characteristics or who may respond
differently to some intervention. The analyst will
typically estimate X on the basis of a few ‘class-
indicators’, such as repeated measures of enuresis
(Croudace, Jarvelin, Wadsworth, & Jones, 2003) or
cross-sectional symptoms of psychosis (Shevlin,
Murphy, Dorahy, & Adamson, 2007) before offering
up X for further investigation e.g. to understand
which early-life factors distinguish between the
classes or what is the long-term prognosis of
members of each group. It is during this secondary
stage where no firm rules have been established
with regard to best practice and a number of
analytical approaches have been adopted across
the applied literature. Despite the relative ease with
which one may determine covariate effects within a
“one-step” model where the measurement model
for X is estimated at the same time as the covariate
odds-ratios for class-membership, a number of
“three-step” procedures are commonly used.

The term “three-step” (Vermunt, 2010) refers to
the sequential stages of firstly estimating the
mixture model, secondly exporting the salient
features of the model to a different statistical
package, before finally analysing some derived
indicator of class membership in further analysis,
e.g. as the outcome in a multinomial logistic
regression model. Popular second-step procedures
include assigning each participant to their most
likely class (Modal Assignment) or incorporating
class-assignment uncertainty either by making
multiple draws from each participant assignment
probabilities (Pseudo-Class Draws, PCD) or using the
probabilities themselves as regression weights
(Proportional Assignment). All methods aside from
the one-step fall under the banner of three-step
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methods, even if the second step merely involves
exporting the data from step one.

Recent simulation work (Clarke & Muthén, 2009)
has demonstrated a number of shortcomings of
these three-step methods, including substantial
parameter bias and over- precise estimates.
However, as described by Clarke & Muthén and also
Vermunt, the three-step strategy brings a number
of advantages including reduced model complexity
as well as avoiding the situation where the form
(and potentially interpretation) of X may alter
depending on the covariates/outcomes included in
the model. As is often the case, a single mixture
model which defines a sub-division of the study
population may give rise to a series of related
papers so there is clear benefit to having a
consistent, unchanging assignment of the study
participants.

In a recent paper, Vermunt (Vermunt, 2010) has
brought applied analysts a new alternative by
devising a pair of refined three-step procedures.
Using standard mixture-modelling output which
describes the agreement between the estimated
and underlying latent measure, the third step of a
three-step procedure can be adjusted to remove
the measurement error induced through estimation
of the latent measure in step two. Bias and
precision are seen to be improved, but crucially the
latent class assignment is unchanged, thus a
succession of different models can be examined
without impacting on the formulation of X.

The aim of the current paper is to investigate
how these estimation approaches perform in
practice, when applied to the analysis of
trajectories of conduct problems in childhood
(Barker & Maughan, 2009) derived using data from
the Avon Longitudinal Study of Parents and Children
(ALSPAC), a UK-based birth-cohort. The latent
grouping produced in the original manuscript has
since been utilized in a number of follow-up
publications (Barker, Oliver, & Maughan, 2010;
Heron et al., 2013a; Heron et al., 2013b; Kretschmer
et al.,, 2014; Oliver, Barker, Mandy, Skuse, &
Maughan, 2011; Stringaris, Lewis, & Maughan,
2014) in which a range of one- and three-step
procedures have been employed in order to
examine further risk factors for non-normative
development or to study late problematic outcomes
in those exhibiting different patterns of conduct
problem behaviour. In the current manuscript we
select a single covariate (gender) in order to
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compare results obtained using the range of
methods now available. Observations are
subsequently verified through simulation.

Methods

Participants

The sample comprised participants from the
Avon Longitudinal Study of Parents and Children
(ALSPAC) (Boyd et al., 2013; Fraser et al.,, 2013;
Golding, Pembrey, & Jones, 2001). ALSPAC is an
ongoing population-based cohort study in the
South-West of England. Pregnant women resident
in the former Avon Health Authority (which
included the city of Bristol), who had an estimated
date of delivery between 1 April 1991 and 31
December 1992, were invited to take part, resulting
in a cohort of 14,541 pregnancies which resulted in
13,796 singletons and first-born twins who were
alive at one year of age. Detailed information about
ALSPAC is available online
(http://www.bris.ac.uk/alspac) and the study
website also contains details of all the data that is
available through a fully searchable data dictionary
(http://www.bristol.ac.uk/alspac/researchers/data-
access/data-dictionary/). Ethical approval for the
study was obtained from the ALSPAC Law and Ethics
Committee and local Research Ethics Committees.

Outcome - Conduct Problem (CP) trajectories
during childhood

The derivation of CP trajectories has been
reported previously (Barker & Maughan, 2009).
Briefly, Latent Class Growth Analysis was applied to
six assessments of mother-reported CP, spanning
the age period from four to 13 years, using the
‘Conduct Problem’ subscale of the Strengths and
Difficulties  Questionnaire  (Goodman, 2001;
Goodman & Scott, 1999) The sum-score at each
wave was dichotomized at the standard threshold
of four or more (Goodman, 2001), yielding six
binary indicators. The four resulting trajectories
were described as “Low” (72.4%), “Childhood
Limited” (CL, 11.8%), “Adolescent Onset” (AO, 7.8%)
and  “Early-Onset  Persistent” (EOP, 8.0%).
Proportions quoted are for the complete-case
sample (n = 4,659) following modal assignment.
Entropy for this model was 0.730.

Exposure

For these models we will focus on offspring sex,
which is coded 0 ‘female’, 1 ‘male’ so that
parameter estimates indicate the extent to which
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boys have greater log-odds compared with girls of
being in the comparison class.

Statistical methods

Whilst “C” is often used when referring to the
latent variable within a latent class model, here we
adopt the notation used in Vermunt (2010). We use
X to denote the underlying latent variable and W
for any predicted classification obtained during the
second step of a three-step estimation method.
Latent class indicators for subject i are denoted by
Y; and a covariate (predictor of class-membership)
by Z;(i.e. sex in the empirical example).

Empirical models

The effect of sex on latent class variable X
(conduct trajectory class) was assessed using a
range of one- and three-step methods, each time
treating X as a four-category multinomial outcome.
Of interest was both the magnitude of the main
effects of sex, given by log-odds ratios, and their
standard errors. As it is customary to approach
these models with the mind-set that these classes
are all inherently different in some way, we chose
to make comparisons between all classes rather
than just deriving parameter estimates with
reference to the normative (Low) group. For each
comparison we examine percentage deviation from
the one-step results, defined to be the difference
between each three-step result and those derived
from the one-step method, expressed as a
percentage of the one-step estimates. We note
here that we are making the assumption that the
one-step results are correct and for our empirical
models we do not know this to be the case.

The following methods were compared:

One-step estimation - The direct effect of sex on
X was estimated by incorporating this independent
variable into the original mixture model. Estimation
was carried out using Mplus version 7.1 (Muthén &
Muthén, 2012).

Three-step methods - With all three-step
methods the first step entails the estimation of an
unconditional mixture model, i.e. a measurement
model for latent class X in the absence of any
potential covariates. The output from this first step
consists of a set of class-assignment probabilities —
denoted P(X = t | Y;) — for each respondent.
Respondents with the same set of responses for
class indicators Y; are given an identical set of class-
assignment probabilities, however depending on
the three-step method chosen, such respondents
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may not all be assigned to the same class. During
step-two these data are used to derive the nominal
variable W, which is then used as the dependent
variable in the final step. Here the methods chosen
adopt one of two alternative step-two procedures —
Modal Assignment and Proportional Assignment.
We first discuss their standard use before
describing the bias-adjusted approaches.

Modal Standard - Perhaps the most commonly-
used three-step method, the second step entails
assigning each respondent to their most likely class
(the class for which P(X =t | Y;) is greatest). In step
three this classification W becomes the nominal
dependent variable in a multinomial logistic
regression analysis. Whilst we use Latent Gold for
all three-step models described, this model can be
estimated in mainstream statistical software such
as Stata and SPSS.

Proportional Standard - In contrast to modal
assignment, three-step methods based on
proportional assignment incorporate the class-
assignment probabilities. Proportional Assignment
involves stacking ones’ class-assignment
probabilities so that each respondent has multiple
rows of data (one row per class). An additional
column is created which indexes these classes. For
step-three a multinomial logistic regression model
is estimated with this class-index as the dependent
variable and the column of assignment probabilities
used as regression weights (this method is also
known as “Probability Weighting”). This model is
also estimable in Stata with the assignment
probabilities defined to be “importance weights”
and in SPSS through the use of frequency weights.

Modal ML and Proportional ML - The three-step
methods Modal Standard and Proportional
Standard suffer from two limitations. Firstly they
assume a perfect relationship between the
classification W derived in step two and the
unmeasured latent variable X, and secondly they
fail to account for the fact that X is latent so its true
values are unknown. Vermunt (2010) devised a pair
of bias-adjusted estimation methods, referring to
these as “Modal ML” and “Proportional ML”. The
estimation of these methods requires the
appropriate “D-matrix” containing classification
probabilities that describe the relationship between
W and X, or put another way, they quantify the
measurement error in W. Through the use of this
classification matrix, a subsequent latent class
estimation - well established as a method for

423

dealing with measurement error in categorical
variables - is able to reproduce the quantity of
interest, namely the effect of covariate Z;on X. As a
consequence of the need for a second latent-class
analysis, software options for estimating step three
are more limited.

Through simulation work, Proportional ML was
observed to produce parameter estimates closer to
the one-step (true) results, whilst Modal ML gave
more accurate standard errors (SE) - SE’s for
Proportional ML were slightly too large. Vermunt
demonstrated how one might estimate these
models in Latent Gold, however Modal ML is also
estimable in Mplus, and, since version 7.1, has been
simplified through use of the “auxiliary” command.
See the supplementary material for further details
on the derivation of the D-matrix and the
estimation of these models in Latent Gold and
Mplus. Finally we note that when the D-matrix for
either Modal or Proportional Assignment is equal to
the identity matrix the Modal Standard or
Proportional Standard estimates are reproduced. In
other words, as stated above, standard methods
make the assumption that there is no measurement
errorin W.

Modal ML (robust) and Proportional ML (robust)
- In a follow-up publication to Vermunt (2010), Bakk
and colleagues (Bakk, Oberski, & Vermunt, 2014)
revised the estimation methods for both Modal and
Proportional ML. By using a complex-sampling
robust estimator to allow for within person
clustering (in our empirical example the stacked
dataset has four rows per respondent) and a Taylor
expansion to better allow for the classification-error
uncertainty inherent in the third step estimation,
improvements on the original bias-adjusted
estimates have been demonstrated, particularly for
Proportional ML. Modal ML (robust) and
Proportional ML (robust) are both available in
Latent Gold version 5.0 however neither can be
estimated currently in Mplus (version 7.3).

Simulation models

We sought to replicate the findings from the
empirical analysis using a simple simulation study.
This enabled us to take control aspects of the model
such as entropy and class separation, and
furthermore ensure that our chosen one-step
model was the appropriate one for the data.

Simulation #1: Relationship between bias and
entropy
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Had we simulated from a model containing a
mixture derived from repeated binary indicator
variables it would have been difficult to vary
entropy/class-separation in a controlled manner.
Consequently, the class indicator used here was a
single multimodal continuous variate Y. Latent class
X was then to be regressed on a single binary
covariate Z; giving rise to a pair of log-odds ratios
describing the Z-by-X relationship. The Monte Carlo
routine in Mplus was used to simulate the
necessary data with further details given below.
Defining the relationship between observed class
indicator Y and latent class X

Continuous variate Y was simulated to be a
mixture of three normal distributions of equal size,
located at values -1 (class 1), 0 (Class 2) and 2 (Class
3) as illustrated in Supplementary Figure 1.
Variances were constrained equal for all three
distributions and were increased incrementally
from 0.05 to 0.5 in steps of 0.05 yielding ten
different simulation models. A (within-class)
variance of 0.05 produces a near-perfect value of
entropy (~1.0) and very good class separation. As
variance is increased, class-separation is reduced
initially for the two closer classes (classes 1 and 2)
and ultimately all three classes will be poorly
separated. Within-class variance was the only
aspect of the model to be varied between
simulations. 500 replications were produced for
each of the ten models with a constant sample size
of 5,001. Preliminary work indicated acceptable
coverage and bias for the one-step model when
using this number of replications.

Defining the relationship between Covariate Z; and
latent class X

The association between binary covariate Z; and
three category nominal outcome X can be described
as a six-cell contingency table. Consequently, five
guantities (in addition to the sample size) are
required to fully describe these data. For the set-up
used in Mplus, the following details were needed:
the proportion of people in the Z; = 0 group; two
log-odds ratios defining the relationship between Z;
and X; and two logits to define the class distribution
X in the unexposed group (Z=0). Here we opted for
three classes of equal size (n = 1,667). The
proportions exposed to Z; within each class were as
follows: class 1 (517/1,667 = 31.0%), class 2
(417/1,667 = 25%), class 3 (317/1,667 = 19%). This
results in a covariate Z; with 25.01% prevalence and
log-odds ratios of 0.649 for class 1 and 0.351 for
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class 2 (with reference to class 3), giving a log-odds
ratio of 0.298 for class 1 with reference to class 2. In
other words, relative to class 3, exposure to
covariate Z; would convey moderately increased
log-odds of being in class 2, and a greatly increased
log-odds of being in class 1. Finally, the chosen cell
counts imply a class-distribution of X of
30.67%/33.33%/36.0% among those unexposed to
Z; which can be described as two logits: -0.160 and -
0.077.
Analysis of simulated data

Each of the one-step and three-step methods
were used to estimate the effect of Z; on X for each
simulated dataset. This was facilitated through use
of the brew package (Horner, 2011) in R (R Core
Team, 2014). All parameter estimates were
imported into Stata version 13.1 (StataCorp., 2013)
where the —simsum- routine (White, 2010) was
employed to derive the measure of bias relative to
the true regression parameters (0.649, 0.351 and
0.298). We also compared estimate precision by
calculating the SD in each parameter estimate
across the 500 simulated datasets.

Simulation #2: Relationship between bias and
pairwise class separation

Analysts tend to focus on entropy as a single
summary measure of class assignment uncertainty
for the whole model, however it is often the case
that some large classes are well defined with other
smaller classes being less so. In this case, it will be
the large classes driving entropy, and not all class-
comparisons will have the same degree of accuracy.
Maitra and Melnykov provide equations (equation
2.1 in Maitra & Melnykov, 2010) for deriving what
they refer to as cluster-overlap when estimating a
Gaussian mixture model. For each pair of classes,
the cluster-overlap is defined as the sum of two
misclassification probabilities for the overlap with
class i when considering class j, and vice versa.
Hence a pairwise measure of cluster-overlap is
readily available and is given by the sum of the [i,j]
and [j,i] elements of the “D-matrix”. This formally
defined measure of cluster-overlap is essentially the
opposite of what we have been referring to more
loosely as class-separation. For a pair of classes
with good separation, overlap will be close to zero.
In contrast, independence between X and W would
yield overlap of 2/(# classes), with a more complex
X-W relationship producing potentially greater
values, though ultimately bounded by 2.
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We sought to investigate the role that cluster-
overlap has on the bias of our estimates. Here, we
focus on the first comparison (class 1 versus class 3)
for which the covariate had the largest effect in the
original simulation (log odds = 0.649). For a given
value of entropy, the association between
parameter bias and pairwise class-overlap is
confounded by the magnitude of the covariate
effects. Consequently we re-simulated the data
after permuting the ordering of the classes. This
was done keeping both entropy AND the covariate-
effects constant and only works because our three
classes were simulated to be of equal size
(otherwise the permutation would alter entropy). If
we label the original simulation model as “123”
reflecting the ordering of the classes at locations -1,
0 and 2, then permuting the classes to orders “312”
and subsequently “231” enables us to vary class-
separation as shown in figure 3. Note that there are
three other possible class orderings, “132”, “213”
and “321”, which produce the same three measures
of cluster-overlap and the same levels for bias
(“123” is equivalent to “321” etc.). Following the
simulation of these new data, the same analytical
steps were performed as for Simulation #1.
Parameter estimate bias was calculated and its
relationship with cluster-overlap was examined.

Results

Empirical example

Estimated sex effects for each pair of latent
classes are shown in table 1. Figures in parentheses
show percentage deviation from the one-step
results. As the entropy for the original mixture
model was not particularly high (0.730), previous
simulation work would predict that standard three-
step methods would be inaccurate, typically under-
estimating the effects of sex and also being overly-
precise since these methods do not capture the
uncertainly in estimated class assignment.

Parameter estimates

For all class comparisons, the standard three-
step methods produce estimates closer to the null
than the one-step results. Estimates obtained using
Proportional ML are consistently within 1 or 2% of
the one-step results. Modal ML estimates are more
variable, and are substantially higher than the one-
step for the comparison of classes Childhood
Limited and Early Onset Persistent. Unsurprisingly,
the use of robust SE’s has no effect here.
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Standard errors

Again, as expected, the standard three-step
methods are overly precise with SE’s up to 32% and
58% lower that the one-step for Modal and
Proportional Standard respectively. Proportional ML
severely over-estimates SE, however the new
complex-sampling  robust variance estimator
demonstrates a marked improvement here. The
robust estimator has little effect on Modal ML, with
all SE’s being moderately raised compared to one-
step and Proportional ML (robust).

Summary of empirical findings

The three-step methods chosen produced a wide
range of estimates for the parameters and their
standard errors. What is apparent is that deviations
relative to the one-step values are typically lower,
particularly for the standard errors, when
comparing pairs of classes which have better
separation. Like many longitudinal mixture models,
the analysis of conduct problems produced patterns
of trajectories which have been described
previously as a soldier’s bed or cat’s cradle (Sher,
Jackson, & Steinley, 2011) in other words high and
low relatively flat trajectories and a pair of
trajectories which cross midway through the time
period. Here the classes which cross (AO and CL) are
less well separated, whilst the two persistent
classes (Low and EOP) have little overlap. This
appears to be reflected in the consistency of their
estimates across the methods.

Simulation #1: Relationship between bias and
entropy

Unconditional three-class mixture models
estimated on each simulated dataset reported the
following entropy values (averaged across 500
datasets): 0.98, 0.91, 0.85, 0.79, 0.75, 0.70, 0.67,
0.63, 0.61 and 0.58. Figure 1 shows the relationship
between entropy and the percentage bias obtained
in the parameter estimates and figure 2 shows
estimated precision (SD of estimate across datasets)
for each method.

When comparing results from bias-adjusted
methods our findings were consistent with recent
simulation work (Bakk et al., 2014). Modal ML and
Modal ML (robust) results were almost identical in
both bias and precision, likely due to the large
sample size in our examples. In contrast (as
expected), there was a marked increase in precision
with Proportional ML (robust). Standard errors for
Proportional ML (robust) were within 3% of the
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one-step values for all values of entropy whereas
for non-robust Proportional ML the standard errors
were in one instance 86% higher than those
obtained using a one-step approach. On the basis of
these results we would caution against the use of
Proportional ML without robust standard errors.
Here we report results only for the two more recent
methods — Modal ML (robust) and Proportional ML
(robust) — however a full set of results are available
on request. To facilitate a clearer comparison of
these two methods, we have reproduced the
figures after removing the standard methods to
enable the y-axis to be restricted (see
supplementary material).

Parameter estimate bias

Due to the location of the three classes,
reduction in entropy initially impacts on the
comparison of class 1 wversus class 2 (third
comparison) followed by the other two
comparisons. We observe both positive and
negative bias in this example, however we note that
estimates affected by positive bias will be bounded
by the maximum value of the true log-odds ratios —
in this case 0.649 (Bolck, Croon, & Hagenaars,
2004). The standard three-step methods are badly
affected by the reducing entropy, with Modal
Standard fairing slightly better but still producing
unacceptable levels of bias unless entropy is very
high. Both bias-adjusted three-step methods
produce estimates with a low level of bias for all
three class comparisons and across the wide range
of entropy values considered.

We see that for the second comparison the bias
for standard three-step methods appears to
decrease for lower values of entropy. This
phenomenon is merely an artefact of our chosen
simulation. As entropy reduces, the distinction
between classes 1 and 2 is the first to become
affected such that class 1 becomes more similar to
class 2 and vice versa. Since class 1 is more strongly
associated with the covariate, our second
comparison (class 2 versus class 3) is boosted,
partially offsetting the negative-bias present in both
standard methods.

Standard Errors

Decreasing entropy should increase uncertainty
and accordingly we observe a reduction in precision
for the (correct) one-step model. Standard errors
for Proportional ML (robust) closely match the one-
step values with Modal ML (robust) giving slightly
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higher values. What is most apparent from these
figures is that the standard three-step approaches
are failing to capture the increasing uncertainty, in
fact in this example Proportional Standard becomes
more precise as the level of assignment uncertainty
increases.

Simulation #2: Relationship between bias and
pairwise class separation

Table 2 shows the resulting biases for this second
set of simulations. Output is restricted here to the
five highest values of entropy — typically the range
in which an analyst might be considering the use of
a standard three-step method. These results are
split into two since methods using Modal and
Proportional assignment will have a different D-
matrix and hence a different value for class-
separation for the same dataset. We see that for
very high levels of entropy (>> 0.9) there is little
detriment to using any modelling approach.
However unacceptable (>10%) levels of bias in the
parameter estimate is present when entropy is still
extremely high (0.91) if the class overlap is
moderate, and in contrast, less bias for lower
entropy (0.75 — 0.80) when a particular pair of
classes has a good degree of separation. Whilst
these results are limited in scope, they suggest that
a decision based solely on entropy may be unwise.

Discussion

Using an empirical example from a large UK birth
cohort and a limited set of simulations we have
compared the estimate effect of a single covariate
on latent class membership using various three-step
approaches commonly used in applied papers from
the fields of psychology, epidemiology and
medicine. Our findings are consistent with previous
simulations showing that standard three-step
methods can produce results which are both biased
and overly precise, particularly when entropy is
poor. What this study adds is the suggestion that
entropy, a single-summary measure of classification
quality, is only part of the story and we would
advise caution regarding a modelling strategy based
solely on its value, for instance whether it exceeds
an arbitrary threshold such as 0.8 or 0.9.

We have demonstrated that for extremely high
values of entropy it remains possible for individual
class comparisons to be biased if the separation
between those classes is poor. In contrast, when
entropy is low, some class comparisons may be
unbiased if their separation is good relative to the
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rest of the model. When faced with the worst-case
scenario of a combination of low entropy and
poorly separated classes, only proportional ML
(robust), of the three-step methods, appears to fare
well, however previous simulations suggest that for
extremely low entropy all three-step methods may
be flawed (Bakk, Tekle, & Vermunt, 2013; Vermunt,
2010) leaving the one-step method as the only
option for obtaining unbiased estimates. Our
simulation focussed on what would be regarded as
a large sample size for this type of analysis and this
is likely to be an explanation for the strong
performance of proportional ML (robust) across the
whole range of entropy considered.

It is clear from our results that pairwise class-
separation may play an important role in
determining the level of bias in the standard three-
step methods, although we are unable to make
recommendations with regard to acceptable
thresholds. There is a strong link between
separation and entropy, and separation will be also
affected by the number of classes present and their
relative positioning. Thus, derivation of thresholds
for class-separation will be challenging. In our view
further efforts would be better directed at
facilitating the use of bias-adjusted three-step
methods within mainstream statistical software.

In our empirical example we focussed on the
respondents with a full set of class indicators.
Whilst we observed good agreement between the
one-step and the robust ML three-step methods
our sample used for analysis consists of merely one
third of ALSPAC hence our estimates may not
generalise to the broader sample of those who
enrolled. Here we make a number of observations
in relation to this since the topic of missing data in
the context of three-step estimation is currently
unexplored.
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Table 1. Parameter estimates for the effect of gender on the four-class multinomial outcome
describing trajectories of conduct problems through childhood.

Methods based on Methods based on
modal assignment proportional assignment
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o e we ImOEW MW
R R v
e we gEOEDOND DWW
@ e awm g ommoomeoamoom o
o e om0 Ua o e Ges s oo
oo BN Gy oy 2 8 (s
Standard error for above parameter estimate
N T - T - B R R
Low PO 0T G (he (ua (aas)  Gen  (00)
o ew GG em gm o om o
ct P07 G0 an G s @en (29
o e em pmoopmoogmooomoowe o
dem 5L e don  (we e (o

Figures in brackets indicate percentage deviation from the one-step results
CL: Childhood Limited, AO: Adolescent Onset, EOP: Early Onset Persistent
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Table 2. The relationship between bias and class-separation for the simple and bias-adjusted three-step methods (effect of covariate Z on class 1
relative to class 3)

Methods based on modal assighment Methods based on proportional assighment
Modal standard Modal ML (robust) Proportional standard Proportional ML
Entropy Class order oStlearTasp oStlearTasp (robust)

Estimate % bias Estimate % bias Estimate % bias Estimate % bias
0.979 123 0.00 0.642 -1.1% 0.646 -0.6% 0.00 0.640 -1.4% 0.646 -0.6%
231 0.00 0.639 -1.6% 0.644 -0.8% 0.00 0.637 -2.0% 0.644 -0.8%
312 0.03 0.628 -3.2% 0.645 -0.7% 0.04 0.620 -4.5% 0.645 -0.6%
0.912 123 0.00 0.630 -3.1% 0.646 -0.6% 0.00 0.622 -4.3% 0.646 -0.6%
231 0.00 0.620 -4.6% 0.643 -1.0% 0.00 0.609 -6.2% 0.644 -0.9%
312 0.11 0.571 -12.1% 0.646 -0.5% 0.17 0.535 -17.7% 0.646 -0.5%
0.849 123 0.00 0.615 -5.2% 0.645 -0.7% 0.00 0.602 -7.2% 0.645 -0.6%
231 0.01 0.598 -7.9% 0.642 -1.1% 0.01 0.579 -10.8% 0.644 -0.9%
312 0.20 0.516 -20.5% 0.648 -0.3% 0.29 0.457 -29.7% 0.647 -0.4%
0.795 123 0.00 0.603 -7.2% 0.645 -0.7% 0.00 0.585 -10.0% 0.645 -0.7%
231 0.03 0.576 -11.2% 0.643 -0.9% 0.04 0.547 -15.7% 0.644 -0.8%
312 0.26 0.469 -27.8% 0.646 -0.6% 0.38 0.394 -39.3% 0.648 -0.3%
0.748 123 0.00 0.592 -8.9% 0.645 -0.7% 0.00 0.568 -12.5% 0.645 -0.7%
231 0.05 0.554 -14.7% 0.644 -0.8% 0.07 0.515 -20.6% 0.645 -0.7%
312 0.32 0.430 -33.7% 0.644 -0.8% 0.45 0.344 -47.0% 0.648 -0.2%

Estimate = average point estimate across 500 replications. % bias = percentage bias relative to true value of 0.649. i.e. (100%*estimate — true-value)/true-value)
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Figure 1. Estimated parameter percentage bias = 100%*((estimate — true-value)/ true-value)

First comparison Second comparison Third comparison
Effect of covariate Z on class 1 relative to class 3. Effect of covariate Z on class 2 relative to class 3. Effect of covariate Z on class 1 relative to class 2.
True log-odds ratio= 0.649 True log-odds ratio = 0.351 True log-odds ratio = 0.298
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Figure 2. Estimated empirical SE (Standard Deviation of the point estimates across 500 replications) for each method

First comparison Second comparison Third comparison
Effect of covariate Z on class 1 relative to class 3. Effect of covariate Z on class 2 relative to class 3. Effect of covariate Z on class 1 relative to class 2.
True log-odds ratio = 0.649 True log-odds ratio = 0.351 True log-odds ratio = 0.298
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Figure 3. Permutation of the class ordering to control class separation
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