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Summary 
Using data from the British Household Panel Survey, we illustrate how longitudinal 
repeated measures of binary outcomes are analysed using population average and 
subject specific logistic regression models.  We show how the autocorrelation found in 
longitudinal data is accounted for by both approaches, and why, in contrast to linear 
models for continuous outcomes, the parameters of population average and subject 
specific models for binary outcomes are different.  To illustrate these points, we fit 
different models to our data set using both approaches, and compare and contrast the 
results obtained.  Finally, we use our example to provide some guidance on how to 
choose between the two approaches.  
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1  Introduction 
In this tutorial, we consider the analysis of 

repeated measures longitudinal data and how to 
choose the most appropriate method of statistical 
analysis.  We restrict our attention to data from 
panel surveys like the British Household Panel 
Survey (BHPS) (ISER 2010) in which the survey 
waves take place at regular intervals, and at each 
wave all sample members are surveyed at 
approximately the same point in time.   

The analysis of longitudinal data typically 
involves questions about the relationship between 
an outcome variable and its predictors, in much the 
same way as when only cross-sectional data are 
available. The difference is that we have outcomes, 
and possibly predictor variables, from each wave to 
include in the analysis.  Longitudinal models allow 
these measures to be incorporated correctly, and 
for us to fully exploit the information contained by 
the data.   

Our tutorial is aimed at quantitative social 
scientists familiar with linear and logistic regression 
models but less familiar with modelling longitudinal 
data.  It is principally about two basic types of 
longitudinal methods called ‘population average’ 

(PA) and ‘subject specific’ (SS) models.  In the case 
of linear models for continuous outcomes, the two 
approaches are very similar, but differences emerge 
when the two are used to analyse binary outcomes.  
To illustrate our tutorial, we analyse the 
relationship between mental health and 
employment status using 18 waves of BHPS data.  
As we will discuss, the choice depends partly on the 
type of research question to be answered, and 
whether this question is answered by estimating 
the effects of time-invariant or time-varying 
predictor variables.   

While we use Stata (StataCorp, 2011) to fit PA 
and SS models to our example data, it is important 
to note that we do not attempt to present a step-
by-step guide on how this is done.  A  Stata ‘.do’ 
file containing the commands used to carry out the 
analyses presented here is provided as 
supplementary material, but we have tried as far as 
possible to make this article independent of the 
software package.  Instead, we focus on highlighting 
the distinction between the two approaches, and 
discuss the reasons why an analyst might report 
results from using one rather than the other.  
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The article is arranged as follows: The data 
example is introduced in Section 2, followed in 
Section 3, by a discussion of the potential and 
limitations of longitudinal data for answering 
complex research questions. In Section 4, we 
formally introduce and compare PA and SS models, 
and in Section 5, we show graphically why the 
coefficients of both models are different.  In Section 
6, we use both approaches to analyse the BHPS 
data, and finally, in Section 7, we discuss how our 
analysis could be extended, and give pointers for 
further reading on this subject.  

2  Data Example 
The main question in our illustrative analysis 

concerns the association between employment 
status and mental health.  In this section, we focus 
on describing the features of a particular longitudinal 
data set, and leave the description of how we model 
these data until the analysis of mental health and 
employment status is formally introduced in Section 
6.  The reader should note that Steele, French and 
Bartley (2013) carry out a comprehensive analysis of 
the same data set using more advanced longitudinal 
modelling techniques, but for illustrative purposes 
we present a simplified analysis.  

The data are extracted from waves 1 to 18 of the 
British Household Panel Survey (BHPS) in which each 
wave took place annually following the first wave in 
1991 (ISER 2010).  Our sample comprises 9,192 men 
aged 16-64.  In an ideal world, the data would be 
‘balanced’ in the sense that we observe the General 
Health Questionnaire (GHQ) score and employment 
status 18 times for each individual subject.  However, 
our data set is ‘unbalanced’ because some subjects 
appear in it for the first time after the first wave in 
1991, and some appear for the last time before the 
final wave in 2008. To take two examples,

this may be because some subjects in sample 
households do not join the panel until after their 16th 
birthdays, and/or drop out (temporarily or 
permanently) of the BHPS. 

The mental health outcome is based on the GHQ, 
which in its raw form measures anxiety and 
depression on a scale from 0 to 36.  Instead of using 
the raw GHQ scores, however, we follow others and 
construct a binary variable of GHQ ‘caseness’, where a 
GHQ case is defined as a subject whose GHQ score is 
greater than 12 (Goldberg et al. 1997), and refer to 

this using the variable ghq_case.  Throughout the 
paper, we take GHQ caseness to be synonymous with 
poor mental health.   

In terms of predictor variables, we limit ourselves 
to employment status (empl), which is represented 
by a 3-category measure: employed (E), unemployed 
(U) and inactive/outside labour force (I).  We also 
include variables for the age of each subject.   

Depending on the software package or particular 
routine being used to fit longitudinal models, the data 
are stored using one of two formats: wide or long.   

In the wide format, the information on a particular 
subject is contained in one row of the data set.  Table 
1 displays a subset of our data using the wide format 
(specifically, waves 1, 2, 6 and 12 out of 18) for ten 
subjects.  Time-varying characteristics like mental 
health are represented using a separate variable for 
its values at each wave, so that ghq_case is 

represented by ghq_w1, ghq_w2, etc.; similarly, 
employment status and age are represented by the 
variables empl_w1, empl_w2, etc. and age_w1, 

age_w2, etc., respectively.  The wide format is mainly 
used for analysing longitudinal data using structural 
equation models, where the repeated measures of 
GHQ are treated as multivariate responses (e.g. Bollen 
and Curran 2005).  
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Table 1. Subset of the BHPS data set represented in wide format. The categories for the employment 

variable(s) are E - employed, U - unemployed, I – inactive. The three time-varying variables, ghq_case (outcome), 

empl and age (predictors) are observed at the different time points as indicated by w1, w2, w6 and w12 

 
pid ghq 

_w1 

ghq 

_w2  

ghq

_w6 

ghq 

_w12 

empl

_w1 

empl

_w2  

empl

_w6 

empl

_w12 

age

_w1 

age

_w2 

age

_w6 

age 

_w12 

1 0 0   U U   28 29   
2 0 0   U U   26 27   
3 0 0 0  E E E  57 58 62  
4 0 1   E E   36 37   
5    0    E    21 
6   1    E    46  
7 0 0 0  E E E  30 31 35  
8 0 0   E E   23 24   
9   0    I    64  

10 1 0 0  U U I  30 31 35  
 

Table 2 displays subjects 1-5 from table 1 but 
using the alternative long format.  Each row now 
corresponds to the data on a subject at a particular 
measurement occasion, which reduces the number 
of columns/variables at the expense of increasing 
the number of rows in the data set.  For instance, 
ghq_case is now represented using one variable 
in conjunction with the subject and wave identifiers 
pid and wave, respectively.  

We also define occasion to indicate the 
measurement occasion for each subject.  There are 
two features of occasion which should be noted: 

first, occasion 1 does not correspond to wave 1 for 
everyone in the sample because some subjects do 
not appear until after the first wave; and second, 
the first record on some subjects is not occasion 1 
because of missing data on the analysis variables at 
earlier occasions.   

Note that we have defined two employment 
status variables here: empl is the subject’s 

employment status at that occasion; and empl1 is 

employment status at occasion 1.  Both age1 and 

empl1 are subject-level variables whose values are 
fixed across occasions for the same subject. 

 

Table 2. Subset of the BHPS data set represented in long format 

 pid wave occasion ghq_case   empl age   empl1 age1 

1 1 1 0 Unemployed 28 Unemployed 28 
1 2 2 0 Unemployed 29 Unemployed 28 
2 1 1 0 Unemployed 26 Unemployed 26 
2 2 2 0 Unemployed 27 Unemployed 26 
2 3 3 0 Unemployed 28 Unemployed 26 
3 1 1 0 Employed 57 Employed 57 
3 2 2 0 Employed 58 Employed 57 
3 3 3 0 Employed 59 Employed 57 
3 6 6 0 Employed 62 Employed 57 
4 1 1 0 Employed 36 Employed 36 
4 2 2 1 Employed 37 Employed 36 
5 12 5 0 Employed 21 Employed 16 

 
      The unbalanced nature of our data can be seen 

in table 1 and table 2: ghq_case and employment 
status are not observed for every subject at every 
occasion.  While this is obvious from the wide 

format data in table 1, where the missing values are 
shown by blanks, it is indicated only by breaks in 
the occasion sequence and so less apparent for 
the long format data in table 2. 
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3   Why Use Longitudinal Data? 
Now that we have seen what a longitudinal data 

set looks like and discussed some of its features, we 
recap on the advantages of longitudinal over cross-
sectional data.   

The first advantage is that longitudinal data 
allow us to establish the temporal ordering of 
events.  Suppose that we measure mental health 
and employment status in two waves of a 
longitudinal panel survey.  The mental health of 
each participant is measured using the GHQ-case 
variable introduced in Section 2, and the 
employment status of each participant is classified 
as either employed (E), unemployed (U) or inactive 
(I).  We can denote employment status at the first 
and second waves by the categorical variables    
and   , respectively, and GHQ-case at the first and 
second waves by    and   , respectively.  The 
longitudinal design allows us to establish with 
certainty that    and    are measured before    
and   .  The time ordering means that neither    
nor     can have caused    or   , and longitudinal 
models with ‘reverse causation’ – in which, say,    
predicts    – can be excluded from consideration.   

But this does not mean that longitudinal data 
automatically gives us the answer to causal 
questions such as “If I change someone’s first-wave 
employment status    then what will happen to his 
second-wave mental health   ?”  To answer such 
questions definitively, the data need to come from 
a longitudinal experimental design, or be adjusted 
appropriately for confounding bias.  For a simple 
example of a longitudinal experimental design, 
consider an experiment where we measure the 
mental health of each participant at wave one,   , 
and then randomise each subject to one of the 
three employment status groups to obtain   .  If 
the subjects all keep their randomised employment 
status during the follow-up period until    is 
measured, then the differences in the proportions 
of GHQ cases between the three employment 
status groups are ‘causal estimates’ of employment 
effect.  While an experiment like this would clearly 
be difficult to implement, the main message is 
simply this: longitudinal data can help rule out 
models with reverse causation, but do not 
guarantee that causal relationships can be 
estimated. 

The second advantage of longitudinal data is 
that the repeated measurements can be used to 
improve the precision of our estimates.  The 

argument we set out here comes from Zeger and 
Liang (1992), who illustrated their point using a 
simple experiment much like the one just described.  
So keep in mind the hypothetical experiment where 
   is randomised employment status, but suppose 
that mental health at each wave,    and   , is 
measured using the raw GHQ score rather than the 
GHQ-case indicator.  Zeger and Liang showed that 
the causal effect of employment status can be 
estimated using the difference score (i.e. the 
difference      ), and calculating the difference 
between the mean difference scores in each of the 
three employment categories.  Not only is this 
estimate unbiased, it is more precise (i.e. has 
smaller standard errors) than simply taking the 
differences between the means of   .  The 
improved precision comes about because measures 
on the same individual, even at different points in 
time, are typically positively associated; the general 
term used to describe positive associations 
between measurements on the same individual is 
‘autocorrelation’.  More generally, however, 
difference scores cannot be used when we have 
more than two measurements, which is why we 
need formal longitudinal data methods to allow for 
autocorrelation and to improve parameter 
estimation. 

The third advantage of longitudinal data is that 
within-subject changes, or growth, over time can be 
explicitly modelled along with the outcome’s 
relationship with time-varying predictors.   

4 Population Average and Subject 
Specific Models 

In this section, we will provide a brief review of 
both population average (PA) and subject specific 
(SS) models.  To help introduce some of the 
fundamental differences between PA and SS 
modelling, we introduce each type of model for the 
more familiar linear case, before moving onto non-
linear logistic models. 

4.1  PA linear models 
In general, we specify longitudinal models for 

repeated measurements taken on each subject at 
different points in time, so all longitudinal models 
have a time dimension.  For our example, we could 
define time by the calendar year in which the wave 
took place, the wave number, the subject-specific 
measurement occasion, or the subject’s age at a 
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particular wave.  In section 6, we discuss the choice 
of time for our application, but for now we talk 
simply in terms of time and time-points.   

So for subject   and time  , it might be tempting 
to use the standard linear model 

                  
where     is the outcome variable (which would be 
the raw GHQ score in our illustrative example) and 
    represents the predictor variable(s).  It is 
typically assumed that the residual     is normally 
distributed with variance   . 

There is one model equation defined for each 
subject at each time-point.  The reason we cannot 
simply fit this model to the longitudinal data is 
because it assumes that all the residuals are 
independent of each other, but we know that all 
residuals on the same subject           are not 
independent because of autocorrelation. 

PA models can be specified and estimated so as 
to account for autocorrelation.  A linear PA model 
comprises two parts.  First is the mean of     given 
the covariates  

     |   )    
     

       
 

where      |   ) denotes the mean outcome 
among those subjects with predictor variables    .  
Notice that no assumption about the distribution of 
the residuals has been made.   

It turns out that we can estimate the 
parameters of the PA model provided we specify 
something about the residual distribution.  In fact, it 
turns out that we only need to specify the 
(auto)correlation between the residuals            
The autocorrelation structure is specified simply 
through the choice of ‘working correlation matrix’ 
which constitutes the second part of the PA model.  
We discuss specification of the working correlation 
matrix in section 4.3. 

4.2  PA logistic models 
For binary outcomes, one would generally 

choose a logistic or probit model.  We focus on the 
former because its parameters are conveniently 
interpreted as log-odds ratios.   

As with the PA linear model above, a PA logistic 
model has two components.  The first component 
can be written as 

              |   )    
     

       
 

where        )          ⁄ ) is the usual logit 
‘link’ function for any probability   between 0 and 
1.  In the context of our example, this means that 
the log-odds of being a GHQ case is linearly related 

to employment status and the other predictor 
variables. 

This is identical to the expression for the 
standard logistic model apart for the   subscript, 
but we cannot fit the standard logistic model to 
longitudinal data.  There does not appear to be a 
residual specified in the model above, but there is a 
hidden residual, and in the standard model these 
are all assumed to be independent.   

The reason we cannot see the residual is 
because it is hidden from us, but we specified it 
implicitly when we chose to use the logit link.  To 
show where it is, we note that the logistic model 
can be represented using latent variables, where 
there is a continuously distributed outcome variable 
   

  hidden from us for which we observed only 
whether its value is positive (i.e.      ) or 
negative (     ).  It is further assumed that the 
hidden outcome variable follows a linear model 
which depends on the same predictor variable(s) as 
above and a hidden residual    

  that is logistically 
distributed.  The (standard) logistic distribution in 
question is a symmetric continuous distribution 
with a mean of 0 and a variance of 3.29 (the probit 
model, on the other hand, is based on the 
assumption that the hidden residuals are normally 
distributed with mean 0 and variance 1).  The 3.29 
value emerges again when we discuss the 
difference between the PA and SS coefficients in 
section 5. 

Hence, we complete the specification of the PA 
logistic model by specifying the working correlation 
matrix for the hidden residuals.  However, we 
cannot estimate these residuals as we can for linear 
models because they are hidden, and we must 
assume that they all have equal variance (i.e. are 
homoskedastic).   

4.3  Fitting PA models  
Liang and Zeger (1986) proposed Generalized 

Estimating Equations (GEE) as an extension of 
standard regression estimation procedures to allow 
for autocorrelation.  In the overwhelming majority 
of applications, PA models are fitted using GEE, and 
so we focus on GEE estimation.  It is the popularity 
of GEE estimation that has resulted in PA and GEE 
becoming synonymous, and the presentation of PA 
models in terms of these estimating equations.  We 
choose not to do this, however, because GEE is not 
a model and, we feel, doing so introduces 
unnecessary algebra that makes PA models seem 
more complex than is actually the case. 
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In short, GEE is a two-stage method in which the 
autocorrelation structure is treated as a nuisance to 
be adjusted for.  Stage 1 of GEE involves estimating 
the ‘working correlation matrix’, the structure of 
which the user must specify prior to estimation; to 
specify this matrix correctly, the user must declare 
the occasion variable.  Stage 2 of GEE uses the 
estimated working correlation matrix to adjust the 
estimates of the logistic model parameters and 
standard errors for autocorrelation.   

For PA linear models, the structure of the 
residual autocorrelation can be estimated from the 
data, and used to choose the working correlation 
matrix.  However, as we have discussed, there is no 
way of doing this for PA logistic models because the 
residuals are hidden from us (while we can estimate 
the autocorrelation between the binary outcomes, 
this is not generally the same as that for the 
residuals).  Instead, we can fit the model using GEE 
with different working correlation matrices, and use 
an appropriate goodness-of-fit criterion to establish 
which is best.   

The four main types of working correlation 
matrix structure are: 

 Independence: The residuals are mutually 
independent (equivalent to a standard logistic 
regression model).  Without adjustment, the 
standard errors obtained using this method will be 
too small unless there is no or very little 
autocorrelation. 

 Exchangeable: Every pair of residuals on a 
subject has the same correlation so that, for 
example, the residuals at occasions 1 and 2 have 
the same correlation as the residuals at occasions 3 
and 5, and so on; this is also known as ‘compound 
symmetry’. 

 Autoregressive: The correlation decreases 
exponentially as the time between measurements 
increases, so that if   is the correlation between 
residuals one occasion apart, then    is the 
correlation between pairs of residuals two 
occasions apart, and so on, getting smaller and 
smaller as the gap increases.   

 Unstructured: The correlation between a 
particular pair of residuals is different to that for all 
other pairs.  So the residuals at occasions 1 and 2 
have correlation    , which is distinct from the 
correlation between residuals at occasions 2 and 3 
   , and so on. 

We herein refer to a PA model fitted using GEE 
with an exchangeable working correlation matrix as 

the ‘exchangeable’ PA model, with the 
‘independent’ PA, ‘autoregressive’ PA, and 
‘unstructured’ PA models similarly defined. 

The exchangeable and autoregressive working 
correlation matrices both involve one parameter,  , 
whereas the unstructured matrix (as its name 
suggests) makes no assumptions about structure 
but involves     )    parameters to represent 
the autocorrelation between the residuals at T 
occasions.  For instance, in our example, there are 
up to 18 measurement occasions and so the 
unstructured working correlation matrix has 
      ⁄      parameters.  In practice, the 
unstructured working correlation matrix should 
always be used for examples involving few 
measurement occasions, but when there are many 
occasions it is often inestimable (i.e. the fitting 
routine is unable to estimate it and will output only 
an error), although this is not the case in our 
illustrative example. 

One way to choose between different matrices 
is to use the quasi-likelihood information criterion 
(qIC) (Pan 2001).  The qIC comprises an overall 
measure of goodness-of-fit and a penalisation for 
model complexity (i.e. the number of parameters in 
the working correlation matrix and predictor 
variables in the model).  Hence, for two models 
with the same goodness-of-fit, the qIC will indicate 
that the model with the fewest parameters is to be 
preferred.  We discuss how to use qIC further on in 
Section 6. 

4.4  SS linear models 
Subject specific (SS) models handle 

autocorrelation by including a unique ‘effect’ for 
each individual subject, which is separate from the 
occasion-specific residual.  In contrast to PA models, 
there are many different ways of specifying the 
individual-level effects in SS models, and many 
different ways of estimating the resulting models.   

An example of a SS linear model is a two-level 
random intercepts model with the individual 
subject at level two and the occasion at level one.  It 
can be written as 

       
     

           
 

where    
     

       is the random intercept 

comprising the fixed intercept   
   and the 

individual-level residual, or ‘random effect’,    .  
The classical assumption is that the individual-level 
residuals are normally distributed with mean zero 
and homoskedastic variance.  The occasion-level 
residuals                are taken to be 
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independent of each other (and of    ) just as for 
standard regression models. 

The residuals can be thought of as representing 
the combined effect on mental health of the 
variables omitted from the model.  Hence, a 
random effect accounts for autocorrelation by ex-
plaining the omitted time-invariant variables for an 
individual subject.  This is the key difference 
between SS and PA models: the PA model makes no 
explicit assumptions about any random effects or 
between-subject differences.  However, the random 
intercepts model implies the same exchangeable 
autocorrelation structure as the exchangeable PA 
model. 

Random intercept models can be extended 
through the addition of ‘random slopes’.  To 
construct a random slopes version of the model 

above, we would specify     
     

       (the 
random intercept) and the random slope 

   
     

      , where     is the same random 
effect as before, and     is another normally 
distributed random effect, which can be correlated 
with    .  This model allows the effect of     on 
mental health to vary between subjects.  In practice 
for longitudinal data, it is common to have a 
covariate corresponding to the time-point to model 
‘growth’ in the outcome over the study; a random 
slope for time thus allows each subject to follow a 
different growth trajectory or trend.   

In our example in Section 6, where we use age 
to index time, we consider a simple linear growth 
relationship between age and mental health, where 
the log-odds of poor mental health can increase or 
decrease linearly with age, at the same rate 
(random intercept) or different rates (random 
slope) for each individual.  More complex 
relationships between the outcome and time can be 
modelled, for example, by including quadratic or 
higher order polynomial terms (e.g. by including 
age

2, age3, etc. in our example).  Each additional 
parameter can be made subject specific by allowing 
it to vary randomly across individuals in a random 
slopes model.  However, each added parameter 
(fixed or random) complicates the model and may 
make its conclusions more difficult to interpret.  As 
a rule, we therefore recommend that readers 
consult manuals and worked examples of such 
models before developing complex random slopes 
models. 

Random slopes models allow more complex 
autocorrelation structures than the simple 

exchangeable autocorrelation allowed by random 
intercepts models.  The correlation between pairs 
of residuals is allowed to depend on the time (as we 
have chosen to index it in the model) between 
measurement occasions in a complex fashion, but 
there is no direct correspondence between the 
autocorrelation structure implied by a random 
slopes model and the autoregressive or un-
structured autocorrelation structures we can 
specify directly for PA models. 

4.5  SS logistic models 
The logistic random intercepts model is likewise 

written 

              |       )     
     

       
 

where again    
     

       is the random 
intercept, and the occasion-level residual is implicit 
in the choice of the logit link.  The individual-level 
residual is normally distributed as before and plays 
the same role as for linear models, namely, 
accounting for autocorrelation due to the omitted 
characteristics of the individual subject common to 
all time points.   

The two variance components (for occasion and 
individual) are on two different scales and cannot 
be compared directly.  However, a useful measure 
is the intra-class correlation (ICC), which is the 
proportion of the total residual variation that is due 
to differences between individuals.  The ICC is 
output by most routines for fitting random 
intercepts models, but it cannot be estimated from 
PA models. 

The use of a non-linear ‘link’ function between 
the probability and the linear predictor on the right 
hand side leads to a difference in interpretation 
between the   parameters of the SS models and PA 
models.  We discuss this distinction in more detail 
in Section 5, and again in the context of our data 
example in Section 6. 

4.6  Fitting SS models  
Different estimation approaches can be used for 

random effects (or mixed effects) models and the 
various statistical packages offer one or more 
different methods which can lead to differences in 
the estimates and standard errors produced.  
Estimation of the parameters involves maximising 
the likelihood function associated with the model, 
and for non-linear models like the logistic this can 
be computationally intensive for large sample sizes 
and models with multiple random effects.  For our 
example, we will be using the default maximum 
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likelihood estimation method available with the 
xtmelogit procedure in Stata, that is, a Gauss-
Hermite adaptive quadrature approximation with 7 
integration points.  

5   Why is there a difference between 
SS and PA coefficients? 

We noted in Section 4 that the coefficients in SS 
and PA logistic models have different interpretations.  
Furthermore, as we will see in the analysis presented 
in Section 6, the SS coefficients will generally be 
larger than the PA ones.  In this section, we use a 
simulated data set to explain why this is the case for 
random intercepts SS and PA exchangeable models, 
which are consistent in this context.   

To begin, just consider one time point t in a 
longitudinal study. For each subject i we have a 
binary variable     and a continuous predictor     at 
that time point.  The predictor variable is uniformly 
distributed and so is equally likely to take any value 
between 0 and 10.  Now suppose that the 
relationship between the predictor and the binary 
outcome at a given time follows the SS random 
intercepts model 

              |   )                   
 

where the random effect     is normally distributed 
with mean 0 and variance 2.  This model tells us 
how the log-odds of a positive response for any 
subject varies with    , which we will denote as  .   

 

 

Figure 1. Subject specific effects of       on the log-odds that       

 
 

From figure 1, we can see how the SS log-odds 
increase with   for 20 randomly selected subjects.  
The relationship is linear, and the blue line shows 
the log-odds for the mean subject       ), which 
happens to equal the log-odds for the median 
subject because     is normally distributed.  As this 
is a random intercepts model, the other lines are 
parallel to that for the mean/median subject (the 
slopes can also vary for different subjects under a 
random slopes model). 

However, the situation changes when we 
consider the relationship between the probability of 
a positive response and   because the relationship 

is now non-linear.  Figure 2a shows the relationship 
between the positive response probability and   for 
the same 20 subjects as displayed in figure 1.  We 
can now see that the change in   is smaller for 
subjects with large positive values of       (i.e. 
the curves near to the top of the figure) than it is 
for the others.  This is because there is a ceiling for 
probabilities: no matter how much   increases, the 
probabilities cannot exceed 1 but only get closer to 
it; this ceiling constrains the effect of  .  There is 
the opposite floor effect for subjects with large 
negative values (     ). 
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Figure 2. Subject specific and population average effects of   on (a) the probability that 
        and (b) the log-odds that      .  The mean probability at     and       is 0.5 

 
 

 
Further displayed in figure 2a is the red PA 

curve, which is obtained by taking the mean of the 
SS probabilities at each value of  .  The SS curve for 
an individual at the mean of the random effects 
distribution       ) is also shown in blue.  Why 
are the two curves different?  It is because of the 
non-linearity of the logistic function that the 
probability for the mean subject will not equal the 
mean probability.  Instead, the probability at 
      now corresponds to the median probability 
because, unlike the mean, the median is unaffected 
by the logistic transformation.   

From figure 2a, it can be seen that for values of 
  between 0 and 7, the PA or mean curve lies above 
the median curve.  This is because the greater part 
of the spread of the SS curves at these values lies 
above the blue line, which indicates a positive skew 
and the median probability exceeding the mean 
probability.  For values of   greater than 7, 
however, the greater part of the response-
probability spread lies below the median, which 
pushes the mean below the median.   

Figure 2b displays the effects of   on the log-
odds scale (this plot is identical to figure 1 apart 

from the addition of the PA line which was obtained 
by applying the logistic transformation to the PA 
probabilities in figure 2a).  We can see that the 

coefficient of   from the PA model    
  ) is the 

slope of the PA line in figure 2b, while the 

coefficient from the SS model    
  ) is the slope of 

the SS line for an individual with      , and we 

can see that   
     

   for most of the time. 
The relationship between the PA and SS effects 

observed in figure 2b holds more generally.  It can 
be shown that the random intercepts SS coefficients 
are related to the PA coefficients by 

    √
    

       
      

where   
  is the between-subject (or random effect) 

variance from the SS model; and 3.29 is the 
variance of a standard logistic distribution, which is 
the within-subject variance under the logistic 
model.  The quantity under the square root is the 
proportion of the variance that is unexplained by   
for the SS model relative to the PA model.  It serves 
to ‘scale down’ the SS coefficient to obtain the PA 
coefficient, and implies that the SS and PA 
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coefficients are equal if there is no between-subject 
variation.  The greater the between-subject var-
iation, the greater the SS coefficient is compared to 
the PA one.  This relationship can be extended to 
more complex random effect structures such as 
random slopes (Zeger, Liang & Albert, 1988). 

A consequence of this is that one should not 
report the SS effect simply because it is larger than 
the PA effect.  It does not mean that the SS model 
shows a ‘stronger’ effect than the PA model; it 
simply means that there is between-subject 
variation: the two measures are equivalent but 
different.  However, we should note that the 
relationship above is only an approximation, and it 
is possible for     to be close to, or even less than, 

    even when the random effect variance is large.  
Finally, although the SS and PA coefficients can be 
very different, the ratio of a parameter estimate to 
its standard error will in general be similar for the 
two models; thus, significance tests will be 
unaffected by the choice of model. 

6  Data Analysis 
6.1  Preliminaries 

We use the BHPS data introduced in Section 2 to 
analyse the relationship between mental health and 
employment status.  A suitable longitudinal analysis of 
these data is important because the relationship is a 
dynamic one that varies from wave to wave, and a 
simpler analysis would risk losing important 
information about variation or change in mental 
health over time.  We conduct a simple analysis here 
to illustrate the most important points regarding the 
comparison of PA and SS logistic models, but refer the 
reader elsewhere for further analyses of the same 
data (Steele et al., 2013). 

Before carrying out any modelling, we first look at 
the raw data.  In the figures below, we use 

occasion as a subject  specific measure of time for 

each subject (occasion being annually spaced), and 
in figure 3 we can see how ghq_case varies over 

time for each category of empl1.  We plot the log-

odds of poor mental health (i.e. ghq_case = 1) 
because it is this that is being modelled by both the PA 
and SS logistic regression models. 

 
 

Figure 3. Relationship between the log-odds of GHQ “caseness” and the time since entry into the 
study by employment status at occasion 1 
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      It can be seen from figure 3 that, when looking 
only at the log-odds of ghq_case at the final 
occasion, and comparing it with the log-odds at the 
first, that there is an increase in both the employed 
and inactive groups, but there is less pronounced 
change among the unemployed.  We can also see 

that the log-odds of ghq_case varies for all 

categories throughout the study period, and this 
variation cannot be captured without using all the 
available outcome measures.  It is worth 
emphasising at this point that figure 3 represents 

the population average log-odds of ghq_case in 
each employment category, which can be very 
different to its subject specific equivalent.   

 
Figure 4. Relationship between the log-odds of GHQ ‘caseness’ and the time since entry into the 

study by time-varying employment status 

 
Figure 4 shows the relationship between the 

log-odds of being a GHQ case/having poor mental 
health and the time-varying employment variable 

(empl).  Comparing figures 3 and 4 highlights that 
the log-odds of poor mental health among the 
unemployed increased during the survey.  As we 
shall see later, the difference between the two 
figures can partly be explained by the change in the 
employment distribution over the observation 
period, which confirms the importance of treating 
employment status as a time-varying predictor.  
However, we first analyse these data using empl1 
as our explanatory variable, and present estimates 
of the effect of employment status on mental 
health using PA and SS models.  

6.2 Simple models with no time-varying 
predictors 

To begin, we fit a simple model in which the 
mental health outcome varies over time but the 
employment status predictor is that from occasion 
1.  Using a symbolic ‘pseudo code’ notation, this 
model can be written as 

 

Log-odds (ghq_case = 1) =  

intercept + unemployed_1 + 

inactive_1 + agec_1 
 

We use this symbolic notation throughout to 
represent the  linear  predictor  (sometimes called the 
‘fixed part’) common to both PA and SS models.  On 
the left hand side, the outcome ghq_case is 
measured at each occasion and so varies over time.  
On the right hand side, however, intercept 
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represents the constant term (its coefficient is the 
intercept   ); unemployed_1 and inactive_1 
are dummy variables for whether subjects were, 
respectively, unemployed and inactive on first entry 
to BHPS; and agec_1 represents the subject’s 
mean-centred age (that is, the difference between 
the subject’s age and the sample mean of age) at 
the first occasion.  Hence, in contrast to the left 
hand side, none of the variables in the linear 
predictor change over time. 

We adjust for age at occasion 1 but note that, in 
substantive (rather than illustrative) applications, 
we may wish to adjust for a wider range of variables 
(for example, to adjust for confounding bias).  We 
use mean-centred age so that    can be interpreted 
as the log-odds of GHQ caseness for an employed 
subject of mean age.  Centring is important for any 

continuous predictor variable for which we wish to 
add a random slope (see section 6.3 for an example). 

We now fit the symbolic model introduced above 
using both the PA and SS approaches.  These 
analyses were conducted using Stata and the 
following functions: logit for the simple logistic; 

xtlogit with options pa and robust to fit PA 
models using GEE; and xtmelogit to fit random 

effects models using the mle fitting option.  The 
code we used for this data analysis is provided in the 
supplementary material and the results are 
presented in table 3. 

The robust option uses a ‘sandwich estimator’ 
that takes into account that the working correlation 
matrix may be incorrect.  All GEE routines will have a 
robust option (or its equivalent) and this should 
always be used. 

 

Table 3. Results from fitting the basic model without temporal trend.  The models fitted are the 

simple logistic regression, the PA with independent correlation matrix (Ind), the SS with random intercepts 
(RI), the PA with exchangeable (Exch), first-order autoregressive (AR1) and unstructured (Uns) correlation 
matrix. The table shows, for each model parameter, the parameter estimate and (robust) standard error. 
For the SS_RI model, we also provide the Intra Class Coefficient (ICC) which is a measure of within-
individual autocorrelation. For each model, a model diagnostic is provided using either the Log Likelihood 
(LogLik) for the simple logistic and SS models, or the qIC (measure of model fit similar to the AIC penalising 
the quasi-likelihood to reflect the complexity of the model; Cui, 2007) for the PA models  
 
 Simple 

Logistic 
PA_Ind SS_RI PA_Exch PA_AR1 PA_Uns 

Intercept -0.774 

(0.009) 

-0.774 

(0.020) 

-1.207 

(0.027) 

-0.800 

(0.018) 

-0.782 

(0.021) 

-0.813 

(0.018) 

inactive_1 0.684 

(0.029) 

0.684 

(0.058) 

0.982 

(0.076) 

0.644 

(0.053) 

0.617 

(0.061) 

0.657 

(0.053) 

unemployed_1 0.450 

(0.025) 

0.450 

(0.050) 

0.696 

(0.070) 

0.462 

(0.046) 

0.455 

(0.055) 

0.487 

(0.045) 

agec_1 0.006 

(0.001) 

0.006 

(0.001) 

0.007 

(0.002) 

0.005 

(0.001) 

0.005 

(0.001) 

0.006 

(0.001) 

Intercept variance   2.964 

(0.083) 

   

ICC   0.474 

(0.007) 

   

qIC/LogLik -45394.7 90820.8 -38793 90829.1 90829.6* 90840.5 

*1,713 individuals are omitted from estimation due to unbalanced unequal observations (that is individuals 
with observations on non-consecutive time points). 
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The first column in table 3 contains the results 
obtained from fitting a simple logistic model that does 
not account for autocorrelation.  The second column 
(PA_Ind) contains the results from fitting the 
independence PA model using GEE, namely, the 
independence PA.  If we do not use the robust option 
for the GEE, we would expect both sets of estimates to 
be exactly the same.  However, as we have discussed, 

GEE should always be estimated using robust, and so 
we can see that the estimated standard errors are 
larger for the PA independence model, because the 
autocorrelation in the data has been allowed for. 

Next we consider the random intercepts (RI) model 
(SS_RI) and the exchangeable PA model (PA_Exch).  
As noted previously, both of these models require that 
the autocorrelation structure is exchangeable, and both 
have larger standard errors than the simple logistic 
model because autocorrelation is accounted for. 

Perhaps the most salient feature of table 3 is that 
the RI model estimates all have larger absolute values 
than the exchangeable PA model estimates.  The 
estimated PA exchangeable logistic model for person   
at occasion   is 
                     |   )

                         

                    

                   
 

and we can interpret the estimates of the two 
employment status dummies in the usual manner for 
logistic models.  The odds of being a GHQ case for 
employed people of mean age at occasion 1 are 
          )      ; the odds ratio of being a GHQ 
case for the unemployed compared to the employed, 
conditional on age at occasion 1, is          )     , 
which means that the unemployed are 60 percent 
more likely to be GHQ cases than the employed; the 
odds ratio for the inactive relative to the employed is 
similarly obtained. 

If we now look at the estimated random intercepts 
SS model  
                     |       )

                         

                    

                        
 

where       is normally distributed with mean 0 and 
variance 2.9.  The presence of the random effect (the 
    term) means that each individual subject has his 
own regression equation. Using this model, for subjects 
with the same value of     , the SS odds of being a GHQ 
case are           )       among subjects 

employed at the start of the study, and the SS odds 
ratio of being a GHQ case for unemployed subjects 
compared to employed ones is          )     .  

As was discussed in section 5, the odds ratios 
obtained using RI models are usually larger than those 
from the exchangeable PA model (Neuhaus, Kalbfleisch 
& Hauck, 1991), but this is because both are different 
measures of the same association.  It is important to 
remember that SS model results should not be 
reported here just because the odds ratio is larger: it 
does not mean that the SS model has estimated a 
‘stronger’ effect, it just means that the two coefficients 
are different measures of association (even though 
both odds ratios equal 1 if there is no association). 

The two approaches are complementary and the 
most relevant depends on the focus of a particular 
analysis.  In our example, the effect of employment 
status can legitimately be reported as either a 
population average or a subject specific effect.  If 
employment status were randomised and fixed 
throughout the study, as in our hypothetical example in 
Section 3, then the PA estimate would be akin to a 
‘causal odds ratio’, summarising the effect of 
employment status across the experimental population 
rather than for any particular subject.  On the other 
hand, the SS estimate pertains to the effect of 
employment status on any given subject, that is, what 
will happen to that subject if he changed only his 
employment status.  (Of course, it is important to 
remember that estimates based on non-experimental 
data will only be causal if confounding bias has been 
adjusted for.) 

In fact, every SS model has a corresponding PA 
model (Lee & Nelder, 2004).  For SS logistic models 
(including random intercepts and random slopes), there 
is a rule for converting the SS parameters to have a PA 
interpretation (see section 5).  This rule is an 
approximation based on the assumption that the 
random effects are normally distributed1.  Using this 
rule, which is simply a refinement of the equation 
displayed in section 5, we can see that there is very 
little difference between these two sets of estimates.  
The ‘marginalised’ estimates of employment at 
occasion 1 compared to the estimates for the 
exchangeable PA model are shown in table 4.  As we 
would expect, the marginalised estimates are not 
exactly equal, partly because the formula is an 
approximation, and partly because of model 
differences (e.g. the PA model does not assume a 
normally distributed random effect). 
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Table 4. Population average estimates from the exchangeable PA model as per table 3 and 
derived from the random intercepts logistic model 

 
 RI PA_Exch 

Employed_1 -0.848 -0.800 

Inactive_1 0.690 0.644 

Unemployed_1 0.489 0.462 

 

Unfortunately, there is no rule for converting PA 
parameters to SS ones because a PA model can 
correspond to many different SS models.  In some 
quarters, this is perceived to be a strength of the PA 
approach, because no assumptions appear to have 
been made about the distribution of the residuals 
and random effects.  However, a counter-argument 
to this is that these assumptions are hidden from us 
and cannot be inspected, whereas the assumptions 
of SS models are clear and can be relaxed if more 
advanced SS modelling approaches are used. 

While the random intercepts and exchangeable 
PA models allow for the same type of 
autocorrelation structure, it is always advisable to 
explore alternative autocorrelation structure 
assumptions to improve the estimation accuracy 
further and ensure the estimates lie as close as 
possible to the truth.  The robust option inflates 
the standard errors, but the estimates may be far 
too large if the choice of working correlation matrix 
is poor.  For PA models, this can be done by fitting 
PA models using GEE with two, more complex, 
autocorrelation structures: the autoregressive and 
unstructured PA models.  These results are 
displayed in the final two columns of table 3. 

We can see from table 3 that the absolute 
values of the unstructured PA (PA_Uns) model 
estimates are larger than those for the 
autoregressive PA (PA_AR1) model, with the 
exchangeable PA model estimates lying somewhere 
between the two.  We can use the qIC to choose 
between the three PA, where the smallest qIC 
indicates the ‘best’ fitting model in terms of the 
balance between goodness-of-fit and simplicity.  
The code used to calculate the qIC is given in the 
supplementary material.  

The first point to note is that the qIC of the 
autoregressive PA model is not directly comparable 
to that for the other two.  This reflects that GEE 
estimation using the autoregressive correlation 

structure, as implemented in Stata, requires that all 
the individuals in the data set are observed for 
consecutive occasions and as such does not handle 
gaps between occasions (users of other software 
must check if the situation is the same for them).  
From the data summary in table 3, we can see that 
only 57,592 (out of 72,173) observations on 7,479 
(out of 9,192) individuals have been used.  To be 
comparable, all three PA models should be fitted to 
the same sample so that the qICs can be compared.  
We take this approach in the analyses to follow (all 
of the models are fitted to the reduced sample of 
7,479 observations), but simply exclude the 
autoregressive PA model for consideration here.  

Now we must decide which of the 
independence, exchangeable PA or unstructured PA 
models to choose.  Looking at the estimated 
working correlation matrix for the exchangeable 
and unstructured PA (correlation matrix for the 
independence PA model is the identity matrix), the 
correlations between different pairs of occasions 
appear to be unequal, with some pairs having larger 
correlations than others (the matrix is not shown, 
but we show how to obtain it using Stata in the 
supplementary material).  This would seem to 
favour the unstructured PA estimates, but the qIC 
for the unstructured PA model is larger than for the 
exchangeable one, most likely because the 
unstructured working correlation matrix has 
            parameters.  Similarly the qIC for 
exchangeable PA is larger than for the 
independence one.  We would not, however, 
recommend choosing the independence PA model; 
for a poor choice of correlation matrix, the robust 
estimates of the standard errors will be overinflated 
and larger than necessary.  Regarding the choice 
between the exchangeable or the unstructured PA 
models, either could be used because the 
parameter estimates for these two models are fairly 
close to one another. 
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6.3   Models that allow for time-varying age  
How can we relax the exchangeable 

autocorrelation structure implied by the random 
intercepts SS model?  The approach we follow is to 
extend the linear predictor of the simple model to 
explain changes in mental health over time.  The 
rationale for this is that the exchangeable (or even 
independence) autocorrelation structure becomes 
more plausible as we explain more systematic 
variation through the linear predictor.   

To do this, we can extend the model to allow a 
subject’s log-odds of GHQ caseness to vary as they 
age, and therefore capture some of the trend in log-
odds we saw in figure 3.  By doing this, we assume 
that changes in mental health over time are driven 
primarily by a subject’s age; the impact of when 
subjects were born (‘cohort effects’) and the 

calendar year when mental health was measured 
(‘period effects’) is thus taken to be less important.  
Using the symbolic notation, this model is written 
as 

 

Log-odds (ghq_case = 1) = 

intercept + unemployed_1 + 

inactive_1 + agec 
 

recalling that we use mean-centred age agec, 
which increases with time and replaces the first-
occasion age variable used in section 6.2.   

The results obtained from fitting this model 
using different PA and SS approaches are presented 
in table 5.  Recall that, in contrast to the results in 
the previous table, we fit the different PA and SS 
models to the 7,479 individuals in order to make 
the other results comparable to those obtained 
using the autoregressive PA model. 

 
 
Table 5. Results from fitting the model with an age trend.  The models fitted are the SS with random 
intercepts (RI) and random slopes (RS), the PA with exchangeable (Exch), first-order autoregressive (AR1) 
and unstructured (Uns) correlation matrix. The table shows, for each model parameter, the parameter 
estimate and (robust) standard error. For the SS models, we also provide the ICC. For each model, a model 
diagnostic is provided using either the Log Likelihood (LogLik) for the SS models or the qIC for the PA 
models. These models are fitted to the reduced dataset of 7,479 individuals 
 

 PA_Exch PA_AR1 PA_Uns SS_RI SS_RS 

intercept -0.819 

(0.019) 

-0.808 

(0.020) 

-0.833 

(0.019) 

-1.238 

(0.029) 

-1.189 

(0.030) 

inactive_1 0.570 

(0.057) 

0.610 

(0.060) 

0.590 

(0.057) 

0.872 

(0.083) 

0.896 

(0.093)  

unemployed_1 0.481 

(0.053) 

0.470 

(0.055) 

0.501 

(0.052) 

0.730 

(0.081) 

0.741 

(0.080) 

agec 0.008 

(0.001) 

0.007 

(0.001) 

0.008 

(0.001) 

0.012 

(0.002) 

0.010 

(0.002) 

Intercept 

variance 

   3.052 

(0.096) 

2.659 

(0.103) 

Slope variance     0.006 

(0.0005) 

Intercept/slope 

covariance 

    0.053 

(0.005) 

ICC    0.481 

(0.008) 

0.447 

(0.010) 

qIC/LogLik 90764.5 90755.1 90759.5 -30918.3  -30738.6 
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Focussing on the SS_RI model (penultimate 
column in table 5), we note that the parameter for 
agec in the SS model describes a within-subject 
trend in mental health with age.  More generally, SS 
models are the more natural choice if within-
subject characteristics of growth are the focus of 
the analysis.  The corresponding effect in the PA 
models is a measure of change in the population 
average and less useful for describing subjects’ 
growth.  

We can extend the random intercepts model by 
allowing a random slope for the effect of agec.  It 
is sensible to consider this model because, as we 
can see from figure 5, there is substantial between-
subject variation in the time trend.  The variance of 
the random slope measures between-subject 
variation in age trend, and allows for a more 
complex autocorrelation structure than the random 
intercepts model.  The use of mean-centred age is 
particularly important here because the random 
intercept variance can be interpreted as the 
between-individual variance at the mean age 
(rather than age zero), and the intercept-slope 
covariance is between an individual subject’s log-
odds of GHQ caseness at the mean age and his rate 

of change.  Centring continuous predictor variables 
with random slopes can also stabilise the fitting of 
these models.   

The results from fitting the random slope model 
are displayed in the final column of table 5 
(SS_RS).  The likelihood ratio test of including the 
random slope is obtained by taking the difference 
between the log-likelihoods for the random slopes 
and intercepts models and multiplying it by    to 
get    , which, compared to a chi-square on 2 
degrees of freedom, reveals substantial evidence to 
support its inclusion.  The random slopes model 
allows a different effect of agec for each 
individual, which implies that two different 
individuals will experience different rates of change 
in the odds of suffering from poor mental health 
with age (even if they are in the same employment 
category).  If we were to convert the SS parameter 
to a PA one using the same method as used for 
table 4, we would find that the relationship would 
be quadratic rather than linear (due to the presence 
of both random intercept and random slope 
variance, as well as the covariance between the two 
random terms), which further emphasises that PA 
models say little about within-subject change. 

 

Figure 5. Sample of individual predicted trajectories based on the random slopes model 
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6.4 Models that allow for time-varying 
employment status  

Finally, we complete the picture by including 
employment status as a time-varying variable to 
utilise fully the information contained in the data.  
Many of the sample subjects changed employment 
status at least once during the study with the 
proportion of men in each employment category 
varying between waves.  

To model time-varying employment status, we 

include empl as a predictor rather than empl1.  We 
assume that this prevents reverse causation because 

empl is asked retrospectively, and the subject’s 
current employment status will have been 
determined at a point prior to the current occasion.  
Conversely, the subject’s mental health varies from 
day to day, and is measured on the day of the study. 

Using our symbolic notation, we can write this 
model as 

Log-odds (ghq_case = 1) = intercept 

+ unemployed + inactive + agec 
 

The variable agec is included on the basis of 

our previous investigations.  While ghq_case is 
measured at the time of the survey, employment 
status is actually determined in the between-time 
point interval, and so – for the purposes of this 
application – we take it to be temporally 
antecedent to the mental health measure.  
However, we discuss in Section 7 the use of ‘lag’ 
variables (namely, including employment status 
from time points prior to the current one) as a 
further guard against reverse causation. 

As previously, we fitted five different models to 
the same dataset: exchangeable PA (PA_Exch), 

autoregressive PA (PA_AR1), unstructured PA 

(PA_Unst), random intercepts (SS_RI), and 

random slopes (SS_RS).   

 

 
Table 6. Results from fitting the model with temporal trend and time-varying employment.  The 
models fitted are the PA with exchangeable (Exch), first-order autoregressive (AR1) and unstructured 
(Uns) correlation matrix, the SS with random intercepts (RI) and random slopes (RS), and the PA with AR1 
correlation matrix and SS with RS for the model with interactions. The table shows, for each model 
parameter, the parameter estimate and (robust) standard error. For the SS models, we also provide the 
ICC. For each model, a model diagnostic is provided using either the Log Likelihood (LogLik) for the SS 
models or the qIC for the PA models. These models are fitted to the reduced dataset of 7,479 individuals 
 

 PA_Exch PA_AR1 PA_Unst SS_RI SS_RS 

intercept -0.813 
(0.020) 

-0.821 
(0.021) 

-0.829 
(0.020) 

-1.229 
(0.029) 

-1.220 
(0.032) 

agec -0.0005 
(0.0003) 

-0.0004 
(0.0003) 

-0.0008 
(0.0003) 

-0.0005 
(0.0004) 

-0.0001 
(0.0005) 

inactive 0.464 
(0.039) 

0.609 
(0.040) 

0.503 
(0.037) 

0.688 
(0.048) 

0.676 
(0.049) 

unemployed 0.576 
(0.041) 

0.647 
(0.041) 

0.611 
(0.040) 

0.844 
(0.054) 

0.843 
(0.054) 

ICC    0.478 
(0.008) 

0.489 
(0.010) 

Variance (intercept)    3.017 
(0.095) 

3.146 
(0.130) 

Variance (age)     0.0002 
(0.00004) 

Covariance 
(intercept/wave) 

    -0.013 
(0.002) 

Model Diagnostic  
(LL or qIC) 

90475 90347 90445 -30850 -30800 
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All the estimates from the various PA models 
are similar to each other apart for the inactive 
category of employment, the coefficient of which 
seems to be influenced by the working correlation 
structure (although the qIC indicates that the 
autoregressive PA seems to be the best model).  For 
the SS models, the random slopes model is a better 
fit to the data than the random intercepts model, 
providing support towards growth-type models 
with individual-specific effects. 

7   Discussion 
In this tutorial, we have considered the 

differences between using population average (PA) 
and subject specific (SS) models for the analysis of 
longitudinal data.   

In short, PA models are more appropriate for 
estimating the average effects of predictors (in our 
case, employment status) on outcomes.  The 
parameters of PA models are most relevant to 
measuring the effect of time-invariant predictors; an 
example of this is in experimental settings (or 
observational settings where it can be justified that 
confounding bias has been adjusted for) for 
estimating the ‘average’ effects of predictor variables 
which correspond to a ‘treatment’ or ‘exposure’ of 
interest.  However, PA models make no (explicit) 
assumptions about the distribution of the random 
effect, and so cannot be used to estimate between-
subject variation or subject-level residuals.  The nature 
of GEE estimation for PA models means we cannot 
use proper goodness-of-fit statistics based on 
likelihoods, and so must rely on ad-hoc tools like qIC.  

The SS models we consider allow a different 
model for each subject through the use of random 
effects. In experimental/confounding-adjusted set-
tings, the parameters of these models correspond to 
the effect of the treatment/exposure on each subject.  
If the target of the analysis is growth, or more general 
within-subject change, then SS models are more 
appropriate than PA models (because, in a nutshell, 
changes in averages are not the same as average 
changes for non-linear models).  Random slopes can 
be used to increase the complexity of the SS models 
(although these models can be difficult to fit) at the 
expense of modelling assumptions like normality of 
the random effects.  An advantage of SS models is that 
PA effects can be estimated using marginalisation.  For 
logistic models with normal random effects, one can 
always use the formulae discussed in sections 5 and 6.  
Conversely, it is impossible to obtain estimates of the 

SS parameters from a PA model because there are 
many SS models that correspond to the same PA 
model (Lee and Nelder, 2004). 

In our application, we handled the missing data 
problem by excluding any subject-occasion 
contributions with missing values from the data set.  
GEEs require that the data are Missing Completely At 
Random (MCAR) such that the missing values arose in 
a manner completely independent of the variables in 
the analysis2.  On the other hand, SS models require 
only that the data are Missing at Random (MAR) such 
that the missing values arose in a manner that 
depends only on the variables we happen to observe.  
More generally, weighted GEE estimation can be 
performed to allow MAR data, and multiple 
imputation methods can be used for either approach 
to ‘fill in’ incomplete data sets under the MAR 
assumption (Carpenter & Kenward, 2013). 

One of the powerful features of longitudinal data 
is that models with reverse causation can be avoided.  
In our application, we argued that using employment 
status to predict mental health, where both were 
measured at the same occasion, precluded reverse 
causation, but this argument may be unconvincing to 
some.  To protect against this, one may use ‘lagged’ 
employment status from the previous occasion as a 
predictor instead; another example, used by Steele et 
al. (2013), is to use the between-occasion change in 
employment status as the predictor.  

The power of longitudinal data to deliver ‘causal’, 
or ‘policy-relevant’, conclusions is limited unless the 
data come from a randomised experiment, and 
involves adjusting for confounding bias, just as 
analyses of cross-sectional data do.  Recall that causal 
effects are not simply associations, but concern the 
change in a subject’s outcome (mental health) if we 
intervene and change his employment status (e.g. 
from unemployed to employed), while holding 
everything else about the subject fixed.  The problems 
of adjusting for confounding bias in longitudinal 
analyses like these are myriad, and necessitate the use 
of advanced approaches like simultaneous equation 
modelling (e.g. Steele et al., 2013), econometric panel 
data models (e.g. Baltagi, 2008) and marginal 
structural models (Robins, Greenland & Hu, 1999).  
Readers new to this subject should be aware that 
these are advanced techniques beyond the scope of 
this paper, and should generally avoid using the 
language of causality when describing any results 
obtained using the models described in this tutorial. 
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Supplementary Material 
Stata .do file corresponding to the analyses is available online as a Supplementary File.   
 

The data used in the analyses are available on request from the authors.  However, as we use BHPS data, 
anyone making such a request must also provide evidence that they are registered with the ESRC Data 
Archive. 

 

References 
Baltagi, B.H. (2008). Econometric Analysis of Panel Data (4th  edn.). Chichester: Wiley.   
Bollen, K.A., & Curran, P.J. (2005). Latent Curve Models: A Structural Equation Perspective. New Jersey: 

Wiley. 
Carpenter, J., & Kenward, M. (2013). Multiple Imputation and its Application. London: Wiley. 
Cui, J. (2007). QIC Program and Model Selection in GEE Analyses. The Stata Journal 7, 209-220. 
Goldberg, D.P., Gater, R., Sartorius, N., Ustun, T.B., Piccinelli, M., Gureje, O., & Rutter, C. (1997). The validity 

of two versions of the GHQ in the WHO study of mental illness in general health care. Psychological 
Medicine, 27, 191-197 

ISER. (2010). British Household Panel Survey: Waves 1-18, 1991-2009 (7th  edn.). University of Essex, Institute 
for Social and Economic Research  [original data producer(s)], Colchester, Essex: UK Data Archive 
[distributor].  

Lee, Y., & Nelder, J.A. (2004). Conditional and Marginal Models: Another View. Statistical Science 19, 219-238. 
Liang, K-Y., & Zeger, S.L. (1986). Longitudinal Data Analysis using Generalized Linear Models. Biometrika 73, 

13-22. 
Neuhaus, J.M., Kalbfleisch, J.D., & Hauck, W.W. (1991). A Comparison of Cluster-Specific and Population-

Averaged Approaches for Analysing Correlated Binary Data. International Statistical Review 59, 25-
35. 

Pan, W. (2001). Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 57, 120-125. 
Robins, J.M., Greenland, S., & Hu, F-C. (1999). Estimation of the causal effect of a time-varying exposure 

on the marginal mean of a repeated binary outcome. Journal of the American Statistical 
Association 94, 687-700. 

StataCorp. (2011). Stata Statistical Software: Release 12. College Station, TX: StataCorp LP.  
Steele, F., French, R., & Bartley, M. (2013). Adjusting for selection bias in longitudinal analyses using 

simultaneous equations modelling: The relationship between employment transitions and mental 
health. Epidemiology (in press). 

Zeger, S.L., & Liang, K-Y. (1986). Longitudinal Data Analysis for Discrete and Continuous Outcomes. 
Biometrics 42, 121-130. 

Zeger, S.L., Liang, K-Y., & Albert, P.S. (1988). Models for Longitudinal Data: A Generalized Estimating 
Equation Approach. Biometrics 44, 1049-1060. 

Zeger, S.L. & Liang, K-Y. (1992). An overview of methods for the analysis of longitudinal data. Statistics in 
Medicine 11, 1825-1839. 

                                                             

 

Endnotes 
1 For a logistic model, the SS parameters can be marginalised by using the Zeger, Liang & Albert (1988) approximation: 

  
       √            

where    represents the vector of SS parameter estimates,   
   the corresponding vector of PA parameter estimates 

for observation i, and    represents the variance of the random part of the linear predictor for observation i, which can 
be different for each individual when random slopes are fitted. 
 
2 GEE can be used for Missing At Random (MAR) data but the working correlation matrix cannot be consistently 
estimated using only the observed data, hence the estimates are consistent but can be very inefficient.  


